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Abstract—Numerical finite-difference calculations have been carried out to determine laminar flow tran-
sition and heat transfer characteristics in tilted three-dimensional rectangular differentially-heated longi-
tudinal enclosures. The tilt angle at which heat transfer attains a local minimum corresponds to the
transition from multicell to unicell flow structures. Numerical results have been found to agree very well
with existing experimental data and observations. Simulation calculations have also been made to determine
the effect of the lateral walls and it is found that the close proximity between the walls restrict flow
development in that direction, thus reducing the overall heat transfer across the enclosure.

INTRODUCTION

NATURAL convection in tilted rectangular enclosures
with differentially-heated side walls has attracted con-
siderable attention because of many important appli-
cations including the design of solar collectors and
double glazing windows. One of the features, as
observed in experiments [1-3] and verified in numeri-
cal studies [4, 5}, is associated with enclosures where,
as the differentially-heated side walls are tilted from
horizontal  (heated-from-below  situation, i..
iy = 180° as shown in Fig. 1) to the vertical (yy = 90°)
position, there exists a critical angle corresponding to
a local minimum heat transfer rate. This phenomenon
is attributed to three-dimensional transition from a
transverse-roll flow pattern to a two-dimensional uni-
cellular flow pattern [1-5]. It should be noted that
all the studies mentioned above deal with enclosures
whose third dimension is large compared to the other
two, and are often referred to as transverse enclosures.
However, a different flow transition may be possible
in longitudinal enclosures, the third dimension of
which is much less than the other two. Basically, the
mechanism of this transition is due to the interaction
between thermal instability associated with the heated-
from-below situation and the buoyancy-driven flows
along the heated and cooled walls. By linear stability
analyses, Davis [6] and Catton [7] have found that the
preferred mode of convection is always some number
of finite rolls with their axes parallel to the short side
of the finite enclosure. This has been confirmed by the

experiments of Stork and Miiller [8]. Hence, on the
basis of the geometry shown in Fig. 1, if 4.(L/H) is
greater than 4 (W/H) it is expected that the finite rolls
will have their axes parallel to the x-axis, as shown in
Fig. 2(a). If A4, is less than unity, the shape of the roll
section is narrow, while for 4, larger than unity it is
square. However, for the case of 4, less than 4, the
finite rolls will have axes parallel to the z-axis as shown
in Fig. 2(b). On the other hand, when the enclosure
in either case is in a vertical position (y = 90°), the
fluid undergoes a unicellular circulation which aligns
its axis in the z-direction as shown in Fig. 2(c). Thus,
itis not difficult to see that this unicellular flow must be
the result of complex flow transition from the thermal
instability-driven rolls as  changes from 180° to 90°.
The axes of the rolls change 90° for transverse enclos-
ures (A4, > A,), while for longitudinal enclosures
(4, < A,) the axis remains the same. It can be expected
that the case of 4, = A, will be even more compli-
cated, since the convection mode at ¥y = 180° consists
of two superimposed rolls at right angles, which
is often called bimodal convection as discussed by
Krishnamurti [9].

Three-dimensional numerical calculations have
been carried out by Yang et al. [5] and by Ozoe et al. [4]
to predict the critical angle for transverse enclosures
(A, > A,) at several aspect ratios and Rayleigh num-
bers. It is shown in ref. [5] that the corresponding two-
dimensional model is very adequate when the tilt angle
¥ is increased from 0° to the critical angle ., while
for Y > y. the heat transfer rate according to this
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g dimensionless gravitational acceleration
vector, i=1,2,3

height of enclosure (Fig. 1}

coeflicient of heat transfer
dimensionless thermal conductivity
length of enclosure (Fig. 1)

Nu  Nusselt number, hAH/E

bn?‘?‘x'm

P dimensionless static pressure

Ra  Rayleigh number, pgf(Ty~ To)H fipax
S source term

T dimensionless temperature

u; dimensionless velocity, i = 1,2,3

W width of enclosure (Fig. 1)

x, ¥, z rectangular coordinates (Fig. 1)
Ax, Ay, Az calculation cell sizes

X rectangular coordinates, i = 1, 2, 3.

NOMENCLATURE
A, aspect ratio, W/H Greek symbols
A, aspect ratio, L/H & thermal diffusivity
c, dimensionless specific heat B volume expansion coefficient
¢m  dimensionless mean specific heat 8;  Kronecker delta

M dimensionless dynamic viscosity
0 dimensionless density
] dimensionless dissipation function
¥ tilt angle (Fig. 1)
W, critical tilt angle.
Subscripts
C cold wall
H hot wall
i,j, k coordinate indices
m mean quantities

Superscript

P, N, S, E, W node designation of basic grid
R reference quantities
t time derivative.

dimensional quantities.

FiG. 1. Three-dimensional rectangular enclosure geometry.

model decreases further, in contrast to the increasing
heat transfer obtained by the three-dimensional model
which gives a local minimum at .. On the other hand,
the unicellular flow pattern from the two-dimensional
calculations persists until a higher angle is reached
where the unicell breaks down into multiple rolls with
axes in the same direction as the original unicell,
unlike the three-dimensional transition of the uni-
cellular flow pattern at . from the three-dimensional
model calculations. Physically the two-dimensional
transition can be accomplished by tilting the enclosure
along the z-axis, as recently carried out experimentally
by Symons and Peck [10}] for a longitudinal enclosure.
However, it shouid be noted that the two-dimensional
model is only valid when the third dimension becomes
very large so that the influence of the lateral walls
vanishes. On the other hand, the longitudinal tran-
sition can only happen physically when the third
dimension is small compared to the other two dimen-
sions. It is therefore apparent that the two-dimen-
sional model is incapable of describing the physical
transition and heat transfer for longitudinal enclos-

(a)

(b)

©

FiG. 2. Enclosure flow patterns: (a) transverse enclosure
at y = 180° (4, > 4,); (b) longitudinal enclosure y = 180°
(4, < A,); (c) vertical enclosure at i = 90°.

ures. The present numerical study is a continuation of
studies given in ref. [5] and specifically deals with
the flow transition in such longitudinal enclosures
(4, < A,), and the results are compared directly with
known experimental data.
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GOVERNING EQUATIONS AND
NUMERICAL SOLUTIONS

Figure 1 shows the geometry of a general three-
dimensional rectangular enclosure. The surfaces at
y =0 and H are differentially heated with the cold
surface at y =0, and all the other surfaces are
insulated. The aspect ratios which define the relative
dimensions of the enclosure are A4,= W/H and
A, = L/H. The working fluid is taken to be air. The
equations governing the three-dimensional laminar
natural convection process in enclosures are the con-
servation equations of mass, momentum and energy.
By introducing the following definitions :

_ X; T fug _ g.H
i; T p
U =—, T= roRE p= Lz
Ur Ty PrUr m
P Com i
=—, C =, =,
p Pr o Cpr prugH
B k
pRCpRuRH

where all barred quantities are dimensional, subscript
R refers to reference quantities, and i = 1,2, 3. In the
above equation, X; is the rectangular coordinates, F
the time variable, g, the gravitational acceleration vec-
tor, i, the velocity vector, T the temperature, § the
static pressure, p the fluid density, ¢,, the fluid mean
specific heat, 7 the fluid viscosity, and % the fluid
thermal conductivity. The governing conservation
equations can now be written in dimensionless tensor
forms as follows :

po+(ou), =0 @
(pu), + (ow); = —p,—pg;+ O 3)
(pcpm 1), +(puicpm T),i = (kT..-),f+,u‘D*Pu.-,i )]

where subscript ¢ denotes derivatives with respect to
t. Furthermore, the dimensionless shear stress tensor
G4s Cpm and dissipation function @ are in turn given
respectively by

Oy = ﬂ(uu +u,— %5.‘1 Uper) &)
1 T

m =71 ), %
O = z(ui,j)26ij + [uiJ(l - 5:‘;)]2 - %(ui,i)2 @)

where d;; is the Kronecker delta. The variations of p,
k and c, as functions of temperature are in accordance
with that utilized in ref. [11]. The reference velocity
ug is chosen to be 0.3048ms™ ', and py and c,g are
evaluated at the cold wall temperature. The Bous-
sinesq approximation is not invoked in the present
study.

The governing equations are discretized by the con-
trol volume approach which insures the conservative
characteristics to be satisfied in every cell and the
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FiG. 3. Calculation cell.

whole calculation domain. A typical cell is shown in
Fig. 3. The temperature, pressure, density and specific
heat are evaluated at point P which is the center of
the basic cell, while the flux quantities are evaluated
at the surfaces of the cell, based on a staggered grid
system. It is well known that discretizing first deriva-
tive terms leads to some inherent difficulties, because
at a cell Peclet number larger than 2.0, the central
difference scheme exhibits oscillatory or divergent
behaviors, while the classical upstream scheme gives
rise to serious artificial diffusion and low accuracy. In
this study the QUICK (quadratic upstream interp-
olation for convection kinematics) scheme, originally
suggested by Leonard [12,13], is first extended to
three-dimensional calculations and then utilized. This
scheme has been shown to give good accuracy and
stability [5].

The difficulty associated with the convective term
is the evaluation of surface properties. Consider the
temperature at the west control volume (Fig. 3) as an
example.

By central difference, we have

T, = 1/ATw+Ts). 1))
By upstream difference, we have
T,=Tyw if u,>0
) &)
T,=Tp if u,<0

and by the QUICK scheme, the following may be
written :

T, = 1/2(Tw + T3)—1/8 CURVN + 1/24 CURVTI
+1/24CURVT2 (10)

where CURVN is the stabilizing curvature term in the
normal x-direction

CURVN = Tyw + Tp—2T
= Tw+Te~2Tp

if u,>0
11

if u, <0
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and CURVT] and CURVT?2 are the stabilizing cur-
vature terms in the two transverse directions (y- and
z-directions), as given by

CURVTI = Tuw+ Tow—2Tw if u, >0
CURVTI = Ts+ Ty —2Tp  if u, <0
CURVT2 = Tyy+ Tyr—2Tw if 1, >0 (12
CURVT2 = Ty + T —2Tp  if u, <O0.

The final general finite-difference equation can then
be written as

APTP = Awrw+AETE +A5T3+ANTN +ABTB

+ATe+S. (13)

Here the source term § includes all the other terms at
the neighboring points of P (such as AnwTww» AswTsws
AgwTaws - - .). Equation {(13) is solved by an iterative
tridiagonal matrix solver which has been described
in our earlier enclosure studies [11,14,15] and will
therefore not be repeated here.

RESULTS AND DISCUSSIONS

Symons and Peck [10] have given several sets of
detailed experimental results for longitudinal enclos-
ures. The dimensions of the enclosure are H = 6.0 cm,
W =450cmand L = 1.0cm, whichresultin 4, = 7.5
and A4, = 1/6. The temperature difference in the exper-
iment is held at 30°C, while the air pressure inside the
pressure vessel is adjusted to achieve different Ray-
leigh numbers. To match with the experimental con-
ditions the initial pressure in the calculations is set
such that the Rayleigh number is 3 x 10°. The cal-
culation domain is divided into 90 (x-direction) x 12
(y-direction) x 6 (z-direction) uniform rectangular
control volumes or calculation cells with Ax =
Ay = 3Az = 1/12.

A three-dimensional numerical simulation has been
carried out for this case, and the resulting flow pat-
terns at different tilt angles are shown in Fig. 4. It is
seen that at = 180°, there are eight transverse cells
with their axes parallel to the z-axis, and the cells are
nearly square. At 165°, the cells on the far side are
washed out due to the presence of an opposing gravi-
tational force and the remaining cells, in which the
gravitational force aids the circulation, become elon-
gated, while those in which the gravity opposes the
circulation are squeezed. As the enclosure is tilted to
¥ = 150°, the first and third cells with the same sense
of circulation near the axis of the tilt combine into a
single cell, while the center or second cell is washed
out. At an angle of 140°, the three cells on the far side
in turn undergo a similar change to form a single cell
and the cell in the middle becomes rather weak and
finally vanishes at a tilt angle below 140°.

Also shown in Fig. 4 are the corresponding flow-
visualization results of Symons and Peck [10]. The
experimental and calculation results match very well
at all tilt angles in terms of cell sizes and cell numbers.

H. Q. Yang, K. T. YanG and J. R. LLoyp

Nusselt number dependence on the tilt angle is given
in Fig. 5. Curve (a) depicts the heat transfer charac-
teristics across the longitudinal enclosure. Between
angles 180° and 160°, the heat transfer rate is seen to
be almost independent of the angle. The qualitative
explanation of this phenomenon can be given in terms
of the flow transition patterns (Fig. 4). In this range
of tilt angles, the flow patterns change from eight
cells to seven cells and intercellular upward convection
remains strong. As the enclosure is further tilted to
around 150°, the number of cells decrease to five and
some of the cells become elongated. The reduction in
cell number implies a reduction in intercellular con-
vection (thermal instability effect). The resulting
decrease in heat transfer, however, is still more
important at this tilt angle than a slight increase in
heat transfer due to the buoyancy force along the hot
and cold walls (hydrodynamic effect). The net result
is a further decrease in the overall heat transfer across
the enclosure. Around a tilt angle of 140°, there are
only three cells left with a very weak center cell as
shown in Fig. 4. At an angle slightly below 140°, a
unicellular flow pattern is formed, at which a local
minimum heat transfer is observed. The charac-
teristics of heat transfer at even smaller tilt angles
are similar to those of a two-dimensional solution
discussed in refs. [5, 15] even though the level of heat
transfer rate is much lower in the present longitudinal
enclosure case.

Symons and Peck’s experimental heat transfer data
[10] are also shown in Fig. 5. As discussed by them,
the observed flow transition from multicell to unicell
flow patterns (or vice versa) depends on the initial
conditions. When the tilt angle is reduced through
successive steady states from 180°, flow visualization
indicates that the transition to unicell occurs close to
¢ = 140°, which, as shown in Fig. 4, agrees well with
the numerical simulation, which also starts at
¥ = 180°. The numerical heat transfer results shown
as curve (a) in Fig. 5 corresponds to the transition
given in Fig. 4. However, the experimental heat trans-
fer data of ref. [10] in Fig. 5 are that corresponding
to a different sequence in which the transition is from
a unicell flow pattern to multicell ones. In this case
the transition, which is at the minimum heat transfer
location, occurs at a tilt angle around 160°. Numerical
simulation for this case has not been attempted in view
of the fact that the corresponding flow visualization
pictures are not indicated in ref. [10].

Numerical calculations have also been carried out
to determine the influence of the lateral walls. The
calculations are made for every 9° tilt angle in the
regions of 0 < ¢ < 108° and 153° < < 180°. How-
ever, tilt angles of 3° increments are used in the region
108° < < 153° to anticipate possible sharp changes.
For A, = 7.5and 4, = 0.5, the Nusselt number depen-
dence on the tilted angle is shown by curve (b) in Fig.
5. The heat transfer is sharply increased because of the
reduction in the physical restrain in the third direction.
However, the variation does not have a sharp decrease
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FiG. 4. Flow patterns in the x—y plane at z = 0.54,, 4, = 7.5, 4, = 1/6 and Ra = 3x 10°.
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F1G. 5. Effect of tilt angle on Nusselt number, 4, = 7.5,
Ra = 3x10°

in the neighborhood of the minimum heat transfer
point, as in the case of 4, = 1/6. Flow patterns at
several locations of x are also plotted in Fig. 6. It is
noted that the velocity vectors plotted in the lateral
cross-sections (y—z plane) have a scale about a hun-
dred times smaller than those given in the cross-sec-
tions in the x—y planes. This is also true in Fig. 7. It

H. Q. YANG, K. T. YanG and J. R. Lroyp

is seen in Fig. 6 that around 150° there is a devel-
opment of a three-dimensional flow initiated at the
two ends, similar to that found in ref. [5]. This lateral
circulation increases the heat transfer, thus lessening
the sharp drop in heat transfer close to the minimum
heat transfer point. At the same time, the lateral flow
also triggers an earlier transition to the unicell struc-
ture, as compared to the case of 4, = 1/6 in Fig. 4.

As A4, is increased further to 1.0, the three-dimen-
sional flow is seen to initialize at an angle even closer
to 180° (Fig. 7). It appears to play a dominant role
in affecting the flow in the longitudinal or x—y plane.
It is also interesting to note that the three-dimensional
effect persists even at 90°. The corresponding heat
transfer characteristics are shown as curve (¢} in Fig.
5. Evidently, beyond 4, = 0.5, the lateral wall effect
is no longer significant.

CONCLUDING REMARKS

A numerical finite-difference study based on the
extended QUICK scheme has been conducted to
determine laminar flow transition characteristics in
tilted three-dimensional longitudinal air-filled rec-

FiG. 6. Flow patterns at z = 0.54,, 4, = 7.5, 4, = 0.5 and Ra = 3x10°,
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FiG. 7. Flow patterns at z = 0.54,, 4, = 7.5, 4, = 1.0 and Ra = 3 x 10°.

tangular enclosures. Tilt angles considered range from
180° (heated from below) to 90° (vertical enclosure)
and to 0° (heat from top), with most calculations
concentrated in the range between 180° and 90° in
which flow transitions occur. Results have been
obtained for a Rayleigh number of 3 x 10° and aspect
ratios of 4, = 7.5 and 4, = 1/6 and are directly com-
pared to existing experimental data. In addition,
simulation calculations have also been carried out for
A, = 0.5 and 1.0 to determine the effect of lateral
walls on the transition phenomena. The following
conclusions can be drawn.

(1) For a longitudinal enclosure with small 4,, the
axes of flow circulation within cells remain in the same
direction when the enclosures are tilted from 180° to
0°, while it is known that for a transverse enclosure
the axes undergo right angle changes [5].

(2) The presence of lateral walls in the third dimen-
sion dramatically affects both flow transition from
multicell to unicell flow patterns and the rate of heat
transfer. The location of such transition relative to

the tilt angle corresponds to a minimum in the heat
transfer rate. For a small 4, of 1/6 the transition is
very abrupt, while for cases of 4, = 0.5 and 1.0, the
transition is much more gradual.

(3) As the depth between the two lateral walls
increases, the overall heat transfer across the enclosure
also increases. However, this increase in the heat
transfer rate is substantial for 4, changing from 1/6
to 0.5, while the increase is not substantial beyond
A4, =0.5. The relatively low heat transfer rates for
A, = 1/6 are due to the close proximity of the two
lateral walls which restricts the development of any
flow in the lateral direction.

(4) It is shown that the present numerical results
simulate the experimental data of ref. [10] very well in
terms of flow patterns in the entire range of the tilt
angle and their transitions from multicell to unicell
structures.

(5) The present numerical results complement those
of ref. [5] for flow transitions in three-dimensional
rectangular transverse enclosures, and it is believed
that with the results obtained in the two studies, the
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overall laminar flow transition phenomena in tilted

Conf., San Francisco, Vol. 4, pp. 1495-1500 (1986).

rectangular enclosures that are differentially heated 6. S. H}lDaViS, Convection in a box: linear theory, J. Fluid
; : : Mech. 30, 465-478 (1967).

Eg:n t::fb;gﬁfijﬁ?fl ;)rlilgjécal mechanisms have now 7. 1. Catton, The effect of insulating vertical walls on the

' onset of motion in a fluid heat from below, Int. J. Heat
Mass Transfer 18, 665-672 (1972).
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TRANSITION LINEAIRE DE CONVECTION NATURELLE DANS DES ENCEINTES
RECTANGULAIRES TRIDIMENSIONNELLES INCLINEES

Résumé—Des calculs numériques aux différences finies ont été faits pour déterminer la transition laminaire
et les caractéristiques de transfert thermique dans des enceintes rectangulaires tridimensionnelles inclinées.
L’angle d’inclinaison pour lequel le transfert de chaleur atteint un minimum local correspond 4 la transition
de structure depuis ’écoulement multicellulaire vers celui unicellulaire. Des résultats numériques s’ac-
cordent trés bien avec les données expérimentales et les observations existantes. Des calculs en simulation
ont été faits pour déterminer U'effet des parois latérales et on trouve que la proximité immeédiate des parois
restreint le développement de I'écoulement dans cette direction, réduisant ainsi le transfert thermique global
a travers l'enceinte.

LAMINARE STR(”)MI{NG BEI NATURLICHER KONVEKTION IN GENEIGTEN
DREIDIMENSIONALEN, LANGS VERLAUFENDEN, REICHTWINKLIGEN HOHLRAUMEN

Zusammenfassung—Numerische Berechnungen mit dem Finite-Differenzen-Verfahren wurden durch-
gefithrt, um die Charakteristik der laminaren Strémung und des Wirmeiibergangs in geneigten drei-
dimensionalen rechtwinkligen, unterschiedlich beheizten, lings verlaufenden Hohlrdumen zu bestimmen.
Der Neigungswinkel, bei dem der Wiarmeiibergang ein lokales Minimum erreicht, korrespondiert mit dem
Ubergang von mehrzelliger zu einzelliger Strémungsstruktur. Die numerischen Ergebnisse stimmen sehr gut
mit vorhandenen experimentellen Daten und Beobachtungen tberein. Es wurden Simulationsrechnungen
durchgefiihrt, um den EinfluB der Seitenwinde zu bestimmen. Es stellt sich heraus, daB ein geringer
Abstand zwischen den Winden die Stromungsentwicklung in dieser Richtung einschrinkt. Infolgedessen
reduziert sich der gesamte Wirmedurchgang im Hohlraum.

MEPEXOJIHBIE PEXXHUMbl JIAMHUHAPHOI'O ECTECTBEHHO-KOHBEKTHBHOTI'O
TEYEHHUS B HAKJIOHHBIX TPEXMEPHbLIX MPOAOJILHBIX IMPSIMOYTOJIbHBIX
IMOJIOCTAX

AHNHOTamHA—MEeTONOM KOHEYHBIX Pa3HOCTEH HCCNEeNOBaH NMEPEXOOHbIA PEXHUM JIAMHUHADHOTO TEYEHNA U
TeNA006MEHHbIC XapaKTEPHCTHKH B HAKJIOHHBIX TPEXMEPHBIX NPAMOYIObHBIX POJOJIbHLIX TTONOCTSX C
pa3noii TeMnepaTypoil 60KOBbIX CTEHOK. YTOJI HAKJIOHA, IPH KOTOPOM MECTHbIH TEIUIONEPEHOC IOCTH-
raeT MHHHMaJIbHOH BEJIKYHHEI, COOTBETCTBYET NEPEXOAY OT MHOTOAYENUCTOM K OJHOAYENCTON CTPYKType
TedeHus. HalineHo, 4To YHCIieHHbIE PE3yIBbTATHl XOPONIO COOTBETCTBYIOT HMEIOLIMMCS IKCIIEPUMEHTAJIb-
HbIM IaHHBIM. BbuIM Takke NpoBENEHBI MOMAENbHbIE PacH€Thl, C TeM 4TOOBl YCTAHOBHTL BIIHAHHME
60Kk0BEIX cTeHOK. HailiieHo, 4To cONMXEHNe CTEHOK MPENATCTBYET PA3BUTHIO TEYCHUS B 3TOM HanpasJie-
HHH, TEM CAMBIM CHHXas TEILIONEPEHOC YEPe3 MOJIOCTb.



