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Abstract-Numerical finite-difference calculations have been carried out to determine laminar flow tran- 
sition and heat transfer characteristics in tilted three-dimensional rectangular differentially-heated longi- 
tudinal enclosures. The tilt angle at which heat transfer attains a local minimum corresponds to the 
transition from multicell to unicell flow structures. Numerical results have been found to agree very well 
with existing experimental data and observations. Simulation calculations have also been made to determine 
the effect of the lateral walls and it is found that the close proximity between the walls restrict flow 

development in that direction, thus reducing the overall heat transfer across the enclosure. 

INTRODUCTION 

NATURAL convection in tilted rectangular enclosures 
with differentially-heated side walls has attracted con- 
siderable attention because of many important appli- 
cations including the design of solar collectors and 
double glazing windows. One of the features, as 
observed in experiments [l-3] and verified in numeri- 
cal studies [4,5], is associated with enclosures where, 
as the differentially-heated side walls are tilted from 
horizontal (heated-from-below situation, i.e. 
$ = 180” as shown in Fig. 1) to the vertical ($ = 90°) 
position, there exists a critical angle corresponding to 
a local minimum heat transfer rate. This phenomenon 
is attributed to three-dimensional transition from a 
transverse-roll flow pattern to a two-dimensional uni- 
cellular flow pattern [l-5]. It should be noted that 
all the studies mentioned above deal with enclosures 
whose third dimension is large compared to the other 
two, and are often referred to as transverse enclosures. 
However, a different flow transition may be possible 
in longitudinal enclosures, the third dimension of 
which is much less than the other two. Basically, the 
mechanism of this transition is due to the interaction 
between thermal instability associated with the heated- 
from-below situation and the buoyancy-driven flows 
along the heated and cooled walls. By linear stability 
analyses, Davis [6] and Catton [7] have found that the 
preferred mode of convection is always some number 
of finite rolls with their axes parallel to the short side 
of the finite enclosure. This has been confirmed by the 

experiments of Stork and Miiller [8]. Hence, on the 
basis of the geometry shown in Fig. 1, if @L/H) is 
greater than A,( W/H) it is expected that the finite rolls 
will have their axes parallel to the x-axis, as shown in 
Fig. 2(a). If A, is less than unity, the shape of the roll 
section is narrow, while for A, larger than unity it is 
square. However, for the case of A, less than A, the 
finite rolls will have axes parallel to the z-axis as shown 
in Fig. 2(b). On the other hand, when the enclosure 
in either case is in a vertical position (rj = 90”), the 
fluid undergoes a unicellular circulation which aligns 
its axis in the z-direction as shown in Fig. 2(c). Thus, 
it is not difficult to see that this unicellular flow must be 
the result of complex flow transition from the thermal 
instability-driven rolls as Ic/ changes from 180” to 90”. 
The axes of the rolls change 90” for transverse enclos- 
ures (A, > A,), while for longitudinal enclosures 
(A, < A,) the axis remains the same. It can be expected 
that the case of A, = A, will be even more compli- 
cated, since the convection mode at $ = 180” consists 
of two superimposed rolls at right angles, which 
is often called bimodal convection as discussed by 
Krishnamurti [9]. 

Three-dimensional numerical calculations have 
been carried out by Yang et al. [5] and by Ozoe et al. [4] 
to predict the critical angle for transverse enclosures 
(A, > A,) at several aspect ratios and Rayleigh num- 
bers. It is shown in ref. [5] that the corresponding two- 
dimensional model is very adequate when the tilt angle 
+ is increased from 0” to the critical angle II/,, while 
for $ > $, the heat transfer rate according to this 
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NOMENCLATURE 

4 aspect ratio, W/H Greek symbols 

‘4, aspect ratio, L/H thermal diffusivity 

fP dimensionless specific heat ; volume expansion coefficient 

% dimensionless mean specific heat 6ij Kronecker delta 

9i dimensionless gravitational acceleration p dimensionless dynamic viscosity 
vector, i = 1,2,3 dimensionless density 

H height of enclosure (Fig. 1) : dimensionless dissipation function 
h coefficient of heat transfer tilt angle (Fig. 1) 
k dimensionless thermal conductivity ZC critical tilt angle. 
L length of enclosure (Fig. 1) 
NU Nusselt number, hH/k Subscripts 

P dimensionless static pressure C cold wall 
Rll Rayleigh number, ~~~(~~ - j?CH3/&& H hot wall 
S source term i, j, k coordinate indices 
T dimensionless temperature m mean quantities 

ai dimensionless velocity, i = 1,2,3 P, N, S, E, W node designation of basic grid 
W width of enclosure (Fig. 1) R reference quantities 
x, y, z rectangular coordinates (Fig. 1) t time derivative. 
AX, AJJ, AZ calculation cell sixes 

Xi rectangular coordinates, i = 1,2, 3. Superscript 
dimensional quantities. 
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FIG. 1. Three-dimensional rectangular enclosure geometry. 

model decreases further, in contrast to the increasing 
heat transfer obtained by the three-dimensional model 
which gives a local minimum at JtC. On the other hand, 
the unicellular flow pattern from the two-dimensional 
calculations persists until a higher angle is reached 
where the unicell breaks down into multiple rolls with 
axes in the same direction as the original unicell, 
unlike the three-dimensional transition of the uni- 
cellular flow pattern at $, from the three-dimensional 
model calculations. Physically the two-dimensional 
transition can be accomplished by tilting the enclosure 
along the z-axis, as recently carried out experimentally 

(cc) 

by Symons and Peck [IO] for a lon~tudinal enclosure. 
However, it shouid be noted that the two-dimensional 
model is only valid when the third dimension becomes 
very large so that the influence of the lateral walls 
vanishes. On the other hand, the longitudinal tran- 
sition can only happen physically when the third 
dimension is small compared to the other two dimen- 
sions. It is therefore apparent that the two-dimen- 
sional model is incapable of describing the physical 
transition and heat transfer for longitudinal enclos- 

FIG. 2. Enclosure flow patterns: (a) transverse enclosure 
at $ = 180” (A, > A,); (b) longitudinal enclosure $ = 180” 

(A, < A,) ; (c) vertical enclosure at $ = 90”. 

ures. The present numerical study is a continuation of 
studies given in ref. [5] and specifically deals with 
the flow transition in such longitudinal enclosures 
(A, < Ax), and the results are compared directly with 
known experimental data. 
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GOVERNING EQUATIONS AND 

NUMERICAL SOLUTIONS 

Figure 1 shows the geometry of a general three- 
dimensional rectangular enclosure. The surfaces at 
y = 0 and H are differentially heated with the cold 
surface at y = 0, and all the other surfaces are 
insulated. The aspect ratios which define the relative 
dimensions of the enclosure are A, = W/H and 
A, = L/H. The working fluid is taken to be air. The 
equations governing the three-dimensional laminar 
natural convection process in enclosures are the con- 
servation equations of mass, momentum and energy. 
By introducing the following definitions : 

cq 
xi=--, 

H 
T=!%, gi =g,H 

UR 

ui 
ldi=-, 

UR 
T=$ p=pI- 

R PRUR 
(1) 

k= 
IT 

PRC~RURH 

where all barred quantities are dimensional, subscript 
R refers to reference quantities, and i = 1,2,3. In the 
above equation, Zi is the rectangular coordinates, I 
the time variable, gi the gravitational acceleration vec- 
tor, Ui the velocity vector, F the temperature, fl the 
static pressure, p the fluid density, Epm the fluid mean 
specific heat, j the fluid viscosity, and E the fluid 
thermal conductivity. The governing conservation 
equations can now be written in dimensionless tensor 
forms as follows : 

PC+ (PUi),i = 0 (2) 

(P"i)~+(Puiuj)j = --P,i-P9i+ai,j (3) 

(PC,, 7% + (WC,, 7% = WY),, + I*@ - PU,,~ (4) 

where subscript t denotes derivatives with respect to 
t. Furthermore, the dimensionless shear stress tensor 
oti, cp,,, and dissipation function @ are in turn given 
respectively by 

Oij = /i(Ui,j + Uj,) - $6fjUk,k) (5) 

1 T 
CP” = ~ 

s T-l , 
cp dT (6) 

@ = 2(Uij)26,$_ [U,J(l -s,)]“-&i)2 (7) 

where 6, is the Kronecker delta. The variations of p, 
k and cp as functions of temperature are in accordance 
with that utilized in ref. [1 11. The reference velocity 
uR is chosen to be 0.3048 m s- ‘, and pR and cpR are 
evaluated at the cold wall temperature. The Bous- 
sinesq approximation is not invoked in the present 
study. 

The governing equations are discretized by the con- 
trol volume approach which insures the conservative 
characteristics to be satisfied in every cell and the 

ww 

2 

FIG. 3. Calculation cell. 

whole calculation domain. A typical cell is shown in 
Fig. 3. The temperature, pressure, density and specific 
heat are evaluated at point P which is the center of 
the basic cell, while the flux quantities are evaluated 
at the surfaces of the cell, based on a staggered grid 
system. It is well known that discretizing first deriva- 
tive terms leads to some inherent difficulties, because 
at a cell Peclet number larger than 2.0, the central 
difference scheme exhibits oscillatory or divergent 
behaviors, while the classical upstream scheme gives 
rise to serious artificial diffusion and low accuracy. In 
this study the QUICK (quadratic upstream interp- 
olation for convection kinematics) scheme, originally 
suggested by Leonard [12,13], is first extended to 
three-dimensional calculations and then utilized. This 
scheme has been shown to give good accuracy and 
stability [5]. 

The difficulty associated with the convective term 
is the evaluation of surface properties. Consider the 
temperature at the west control volume (Fig. 3) as an 
example. 

By central difference, we have 

T, = 1/2(Tw + T,). (8) 

By upstream difference, we have 

T, = T, if u, > 0 

T, = Tp if u, < 0 

and by the QUICK scheme, the following may be 
written : 

T, = 1/2(T,+T,)-1/8CURVN+l/24CURVTl 

+ 1/24CURVT2 (10) 

where CURVN is the stabilizing curvature term in the 
normal x-direction 

CURVN = T,+T,-2Tw if u,,, > 0 

= T,+T,-2T, if u, <O 
(11) 
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and CURVTl and CURVT2 are the stabilizing cur- 
vature terms in the two transverse directions (_y- and 
z-directions), as given by 

CURVTl = TN, + T,, -2T, if u,>O 

CURVTl = T,+T,-ZT, if u, <O 

CURVT2 = T,, + T,, - 2Tw if u, > 0 
(12) 

CURVT2 = TB + TF - 2 Tp if u, < 0. 

The final general finite-difference equation can then 
be written as 

+A,TF+S. (13) 

Here the source term S includes all the other terms at 
the neighboring points of P (such as ANWTNW, AswTsw, 
ABWTBW, . . .). Equation (13) is solved by an iterative 
tridiagonal matrix solver which has been described 
in our earlier enclosure studies [ 11,14,15] and will 
therefore not be repeated here. 

RESULTS AND DISCUSSIONS 

Symons and Peck [lo] have given several sets of 
detailed experimental results for longitudinal enclos- 
ures. The dimensions of the enclosure are H = 6.0 cm, 
W = 45.0 cm and L = 1 .O cm, which result in A, = 7.5 
and AL = l/6. The temperature difference in the exper- 
iment is held at 30°C while the air pressure inside the 
pressure vessel is adjusted to achieve different Ray- 
leigh numbers. To match with the experimental con- 
ditions the initial pressure in the calculations is set 
such that the Rayleigh number is 3 x 10’. The cal- 
culation domain is divided into 90 (x-direction) x 12 
t&direction) x 6 (z-direction) uniform rectangular 
control volumes or calculation cells with Ax = 
Ay=3Az= l/12. 

A three-dimensional numerical simulation has been 
carried out for this case, and the resulting flow pat- 
terns at different tilt angles are shown in Fig. 4. It is 
seen that at IJI = 180”, there are eight transverse cells 
with their axes parallel to the z-axis, and the cells are 
nearly square. At l&5”, the cells on the far side are 
washed out due to the presence of an opposing gravi- 
tational force and the remaining cells, in which the 
gravitational force aids the circulation, become elon- 
gated, while those in which the gravity opposes the 
circulation are squeezed. As the enclosure is tilted to 
$ = 150”, the first and third cells with the same sense 
of circulation near the axis of the tilt combine into a 
single cell, while the center or second cell is washed 
out. At an angle of 140”, the three cells on the far side 
in turn undergo a similar change to form a single cell 
and the cell in the middle becomes rather weak and 
finally vanishes at a tilt angle below 140”. 

Also shown in Fig. 4 are the corresponding flow- 
visuali~tion results of Symons and Peck [lo]. The 
experimental and calculation results match very well 
at all tilt angles in terms of cell sizes and cell numbers. 

Nusselt number dependence on the tilt angle is given 
in Fig. 5. Curve (a) depicts the heat transfer charac- 
teristics across the longitudinal enclosure. Between 
angles 180” and 160”, the heat transfer rate is seen to 
be almost independent of the angle. The qualitative 
explanation of this phenomenon can be given in terms 
of the flow transition patterns (Fig. 4). In this range 
of tilt angles, the flow patterns change from eight 
cells to seven cells and intercellular upward convection 
remains strong. As the enclosure is further tilted to 
around 150”, the number of cells decrease to five and 
some of the cells become elongated. The reduction in 
cell number implies a reduction in intercellular con- 
vection (thermal instability effect). The resulting 
decrease in heat transfer, however, is still more 
important at this tilt angle than a slight increase in 
heat transfer due to the buoyancy force along the hot 
and cold walls hydrodynamic effect). The net result 
is a further decrease in the overall heat transfer across 
the enclosure. Around a tilt angle of 140”, there are 
only three cells left with a very weak center cell as 
shown in Fig. 4. At an angle slightly below 140”, a 
unicellular flow pattern is formed, at which a local 
minimum heat transfer is observed. The charac- 
teristics of heat transfer at even smaller tilt angles 
are similar to those of a two-dimensional solution 
discussed in refs. [5, 151 even though the level of heat 
transfer rate is much lower in the present lon~tudinal 
enclosure case. 

Symons and Peck’s experimental heat transfer data 
[lo] are also shown in Fig. 5. As discussed by them, 
the observed flow transition from multicell to unicell 
flow patterns (or vice versa) depends on the initial 
conditions. When the tilt angle is reduced through 
successive steady states from 180”, flow visualization 
indicates that the transition to unicell occurs close to 
+ = 140”, which, as shown in Fig. 4, agrees well with 
the numerical simulation, which also starts at 
It, = 180”. The numerical heat transfer results shown 
as curve (a) in Fig. 5 corresponds to the transition 
given in Fig. 4. However, the experimental heat trans- 
fer data of ref. [lo] in Fig. 5 are that corresponding 
to a different sequence in which the transition is from 
a unicell flow pattern to multicell ones. In this case 
the transition, which is at the minimum heat transfer 
location, occurs at a tilt angle around 160”. Numerical 
simulation for this case has not been attempted in view 
of the fact that the corresponding flow visualization 
pictures are not indicated in ref. [IO]. 

Numerical calculations have also been carried out 
to determine the influence of the lateral walls. The 
calculations are made for every 9” tilt angle in the 
regions of 0 < + < 108” and 153” < J, < 180”. How- 
ever, tilt angles of 3” increments are used in the region 
108” < $ < 153” to anticipate possible sharp changes. 
For A, = 7.5 and A, = 0.5, the Nusselt number depen- 
dence on the tilted angle is shown by curve (b) in Fig. 
5. The heat transfer is sharply increased because of the 
reduction in the physical restrain in the third direction. 
However, the variation does not have a sharp decrease 
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FIG. 5. Effect of tilt angle on Nusselt number, A, = 7.5, 
Ru=3xlO*. 

in the neighborhood of the minimum heat transfer 
point, as in the case of A, = i/6. Flow patterns at 
several locations of x are also plotted in Fig. 6. It is 
noted that the velocity vectors plotted in the lateral 
cross-sections 0-z plane) have a scale about a hun- 
dred times smaller than those given in the cross-sec- 
tions in the x--y planes. This is also true in Fig. 7. It 

is seen in Fig. 6 that around 150” there is a devel- 
opment of a three-dimensional flow initiated at the 
two ends, similar to that found in ref. [5]. This lateral 
circulation increases the heat transfer, thus lessening 
the sharp drop in heat transfer close to the minimum 
heat transfer point. At the same time, the lateral flow 
also triggers an earlier transition to the unicell struc- 
ture, as compared to the case of A, = l/6 in Fig. 4. 

As A, is increased further to 1.0, the three-dimen- 
sional flow is seen to initialize at an angle even closer 
to 180” (Fig. 7). It appears to play a dominant role 
in affecting the flow in the longitudinal or x-y plane. 
It is also interesting to note that the three-dimensional 
effect persists even at 90”. The corresponding heat 
transfer characteristics are shown as curve (c) in Fig. 
5. Evidently, beyond A, = 0.5, the lateral wall effect 
is no longer significant. 

CONCLUDING REMARKS 

A numerical finite-difference study based on the 
extended QUICK scheme has been conducted to 
determine laminar flow transition characteristics in 
tilted three-dimensional longitudinal air-filled rec- 

FlG. 6. Flow patterns at z = OSA,, A, = 7.5, A, = 0.5 and Ra = 3 x 105. 
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FIG 7. Flow patterns at z = 0.5A,, A, = 7.5, A, = 1.0 and Ra = 3 x 10’. 

tangular enclosures. Tilt angles considered range from 
180” (heated from below) to 90” (vertical enclosure) 
and to 0” (heat from top), with most calculations 
concentrated in the range between 180” and 90” in 
which flow transitions occur. Results have been 
obtained for a Rayleigh number of 3 x 10’ and aspect 
ratios of A, = 7.5 and A, = l/6 and are directly com- 
pared to existing experimental data. In addition, 
simulation calculations have also been carried out for 
A, = 0.5 and 1.0 to determine the effect of lateral 
walls on the transition phenomena. The following 
conclusions can be drawn. 

(1) For a longitudinal enclosure with small A,, the 
axes of flow circulation within cells remain in the same 
direction when the enclosures are tilted from 180” to 
O”, while it is known that for a transverse enclosure 
the axes undergo right angle changes [S]. 

(2) The presence of lateral walls in the third dimen- 
sion dramatically affects both flow transition from 
multicell to unicell flow patterns and the rate of heat 
transfer. The location of such transition relative to 

the tilt angle corresponds to a minimum in the heat 
transfer rate. For a small A, of l/6 the transition is 
very abrupt, while for cases of A, = 0.5 and 1.0, the 
transition is much more gradual. 

(3) As the depth between the two lateral walls 
increases, the overall heat transfer across the enclosure 
also increases. However, this increase in the heat 
transfer rate is substantial for A, changing from l/6 
to 0.5, while the increase is not substantial beyond 
A, = 0.5. The relatively low heat transfer rates for 
A, = l/6 are due to the close proximity of the two 
lateral walls which restricts the development of any 
flow in the lateral direction. 

(4) It is shown that the present numerical results 
simulate the experimental data of ref. [lo] very well in 
terms of flow patterns in the entire range of the tilt 
angle and their transitions from multicell to unicell 
structures. 

(5) The present numerical results complement those 
of ref. 1.51 for flow transitions in thr~-dimensional 
rectangular transverse enclosures, and it is believed 
that with the results obtained in the two studies, the 
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overall laminar flow transition phenomena in tilted 
rectangular enclosures that are differentially heated 
and the underlying physical mechanisms have now 
been substantially clarified. 
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TRANSITION LINEAIRE DE CONVECTION NATURELLE DANS DES ENCEINTES 
RECTANGULAIRES TRIDIMENSIONNELLES INCLINEES 

R&m&Des calculs numeriques aux differences finies ont ete faits pour determiner la transition laminaire 
et les caracteristiques de transfert thermique dans des enceintes rectangulaires tridimensionnelles inclinees. 
L’angle d’inclinaison pour lequel le transfert de chaleur atteint un minimum local correspond a la transition 
de structure depuis I’tcoulement multicellulaire vers celui unicellulaire. Des resultats numeriques s’ac- 
cordent tres bien avec les donnees experimentales et les observations existantes. Des calculs en simulation 
ont et& faits pour determiner l’effet des parois laterales et on trouve que la proximite immediate des parois 
restreint le developpement de l’ecoulement dans cette direction, reduisant ainsi le transfert thermique global 

a travers l’enceinte. 

LAMINARE STRiZMUNG BEI NATURLICHER KONVEKTION IN GENEIGTEN 
DREIDIMENSIONALEN, LANGS VERLAUFENDEN, REICHTWINKLIGEN HOHLRAUMEN 

Zusammenfassung-Numerische Berechnungen mit dem Finite-Differenzen-Verfahren wurden durch- 
gefiihrt, urn die Gharakteristik der laminaren Stromung und des Wlrmeiibergangs in geneigten drei- 
dimensionalen rechtwinkligen, unterschiedlich beheizten, langs verlaufenden Hohlraumen zu bestimmen. 
Der Neigungswinkel, bei dem der Warmeiibergang ein lokales Minimum erreicht, korrespondiert mit dem 
Ubergang von mehrzelliger zu einzelliger Stromungsstruktur. Die numerischen Ergebnisse stimmen sehr gut 
mit vorhandenen experimentellen Daten und Beobachtungen iiberein. Es wurden Simulationsrechnungen 
durchgefiihrt, urn den EinfluB der Seitenwande zu bestimmen. Es stellt sich heraus, dal3 ein geringer 
Abstand zwischen den Wanden die Stromungsentwicklung in dieser Richtung einschrankt. Infolgedessen 

reduziert sich der gesamte Warmedurchgang im Hohlraum. 

IIEPEXOAHbIE PE)I(AMbI JIAMMHAPHOFO ECTECTBEHHO-KOHBEKTMBHOFO 
TErIEHHR B HAKJIOHHbIX TPEXMEPHbIX I-IPOAOJIbHbIX IIPIlMOYI-OJIbHbIX 

IIOJIOCTRX 

hIHOTPUR~MeTOAOM KOHe'iHblX pa3HOCTek HCCAeAOBaH nepeXOAHblfi peWiM JIaMBHapHOrO Te'ieHAIl A 

TenAOO6MeHHbIeXapaKTepHCTHKHBHaKAOHHblXT~XMepHblX npKMO,'rOJ7bHblXnpOAOAbHbIXnOAOCTRXC 

pa3Hofi TeMneparypofi ~OKOB~X cresoK.Yron HaKnoHa,npe K0T0p0~ MeCTHbG TennonepeHoc A~CTW- 

raeT MHHHMaJlbHOii BeABWHbI,COOTBeTCTB,'eT nepeXOAy OT MHOrOK'feE,CTOti K OL(“OP,eH‘XOii CTpyKT,'pe 

Te~eHHR.~B~AeHO,~TOSHCAeHHble~3~AbTaTblXOpO~OCOOTBeT~B~~T HMeEOIIlWMCII sKcnepnMeHTaJIb- 

HbIM AaHHbIM. 6blAH TBK;Ye npOBeAeHbl MOAeJlbHbIe paC'kTb1, C TeM 'iT06bI YCTaHOBBTb B,,WIlHAe 

6oKOB61xCTeHOK. Hatieno, 'iTO c6nHmeHue CTeHOK Il~nnTCTByeT pa3BWTNH) Te'ieHWII B 3TOM Hanpaene- 


